Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 152: 104631, 2024 04.
Article in English | MEDLINE | ID: mdl-38548006

ABSTRACT

Selection bias can arise through many aspects of a study, including recruitment, inclusion/exclusion criteria, input-level exclusion and outcome-level exclusion, and often reflects the underrepresentation of populations historically disadvantaged in medical research. The effects of selection bias can be further amplified when non-representative samples are used in artificial intelligence (AI) and machine learning (ML) applications to construct clinical algorithms. Building on the "Data Cards" initiative for transparency in AI research, we advocate for the addition of a participant flow diagram for AI studies detailing relevant sociodemographic and/or clinical characteristics of excluded participants across study phases, with the goal of identifying potential algorithmic biases before their clinical implementation. We include both a model for this flow diagram as well as a brief case study explaining how it could be implemented in practice. Through standardized reporting of participant flow diagrams, we aim to better identify potential inequities embedded in AI applications, facilitating more reliable and equitable clinical algorithms.


Subject(s)
Biomedical Research , Health Equity , Humans , Artificial Intelligence , Algorithms , Machine Learning
2.
J Clin Med ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37892832

ABSTRACT

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) often suffer from acute exacerbations. Our objective was to describe recurrent exacerbations in a GP-based Swiss COPD cohort and develop a statistical model for predicting exacerbation. METHODS: COPD cohort demographic and medical data were recorded for 24 months, by means of a questionnaire-based COPD cohort. The data were split into training (75%) and validation (25%) datasets. A negative binomial regression model was developed using the training dataset to predict the exacerbation rate within 1 year. An exacerbation prediction model was developed, and its overall performance was validated. A nomogram was created to facilitate the clinical use of the model. RESULTS: Of the 229 COPD patients analyzed, 77% of the patients did not experience exacerbation during the follow-up. The best subset in the training dataset revealed that lower forced expiratory volume, high scores on the MRC dyspnea scale, exacerbation history, and being on a combination therapy of LABA + ICS (long-acting beta-agonists + Inhaled Corticosteroids) or LAMA + LABA (Long-acting muscarinic receptor antagonists + long-acting beta-agonists) at baseline were associated with a higher rate of exacerbation. When validated, the area-under-curve (AUC) value was 0.75 for one or more exacerbations. The calibration was accurate (0.34 predicted exacerbations vs 0.28 observed exacerbations). CONCLUSION: Nomograms built from these models can assist clinicians in the decision-making process of COPD care.

SELECTION OF CITATIONS
SEARCH DETAIL
...